Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Anesth Analg ; 131(4): 993-999, 2020 10.
Article in English | MEDLINE | ID: covidwho-760675

ABSTRACT

BACKGROUND: The cellular immune system is of pivotal importance with regard to the response to severe infections. Monocytes/macrophages are considered key immune cells in infections and downregulation of the surface expression of monocytic human leukocyte antigen-DR (mHLA-DR) within the major histocompatibility complex class II reflects a state of immunosuppression, also referred to as injury-associated immunosuppression. As the role of immunosuppression in coronavirus disease 2019 (COVID-19) is currently unclear, we seek to explore the level of mHLA-DR expression in COVID-19 patients. METHODS: In a preliminary prospective monocentric observational study, 16 COVID-19-positive patients (75% male, median age: 68 [interquartile range 59-75]) requiring hospitalization were included. The median Acute Physiology and Chronic Health Evaluation-II (APACHE-II) score in 9 intensive care unit (ICU) patients with acute respiratory failure was 30 (interquartile range 25-32). Standardized quantitative assessment of HLA-DR on monocytes (cluster of differentiation 14+ cells) was performed using calibrated flow cytometry at baseline (ICU/hospital admission) and at days 3 and 5 after ICU admission. Baseline data were compared to hospitalized noncritically ill COVID-19 patients. RESULTS: While normal mHLA-DR expression was observed in all hospitalized noncritically ill patients (n = 7), 89% (8 of 9) critically ill patients with COVID-19-induced acute respiratory failure showed signs of downregulation of mHLA-DR at ICU admission. mHLA-DR expression at admission was significantly lower in critically ill patients (median, [quartiles]: 9280 antibodies/cell [6114, 16,567]) as compared to the noncritically ill patients (30,900 antibodies/cell [26,777, 52,251]), with a median difference of 21,508 antibodies/cell (95% confidence interval [CI], 14,118-42,971), P = .002. Reduced mHLA-DR expression was observed to persist until day 5 after ICU admission. CONCLUSIONS: When compared to noncritically ill hospitalized COVID-19 patients, ICU patients with severe COVID-19 disease showed reduced mHLA-DR expression on circulating CD14+ monocytes at ICU admission, indicating a dysfunctional immune response. This immunosuppressive (monocytic) phenotype remained unchanged over the ensuing days after ICU admission. Strategies aiming for immunomodulation in this population of critically ill patients should be guided by an immune-monitoring program in an effort to determine who might benefit best from a given immunological intervention.


Subject(s)
Coronavirus Infections/immunology , Critical Illness , HLA-DR Antigens/biosynthesis , HLA-DR Antigens/immunology , Immune Tolerance/immunology , Pneumonia, Viral/immunology , APACHE , Aged , Antibodies/analysis , Antibodies/immunology , COVID-19 , Coronavirus Infections/therapy , Critical Care , Down-Regulation/immunology , Female , Humans , Immunotherapy , Lipopolysaccharide Receptors/immunology , Male , Middle Aged , Monocytes/immunology , Pandemics , Pneumonia, Viral/therapy , Prospective Studies , Respiratory Insufficiency/immunology , Respiratory Insufficiency/physiopathology
2.
Best Pract Res Clin Anaesthesiol ; 34(2): 345-351, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-325827

ABSTRACT

Limiting the spread of the disease is key to controlling the COVID-19 pandemic. This includes identifying people who have been exposed to COVID-19, minimizing patient contact, and enforcing strict hygiene measures. To prevent healthcare systems from becoming overburdened, elective and non-urgent medical procedures and treatments have been postponed, and primary health care has broadened to include virtual appointments via telemedicine. Although telemedicine precludes the physical examination of a patient, it allows collection of a range of information prior to a patient's admission, and may therefore be used in preoperative assessment. This new tool can be used to evaluate the severity and progression of the main disease, other comorbidities, and the urgency of the surgical treatment as well as preferencing anesthetic procedures. It can also be used for effective screening and triaging of patients with suspected or established COVID-19, thereby protecting other patients, clinicians and communities alike.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Preoperative Care/methods , Telemedicine/methods , Anesthesia , COVID-19 , Humans
3.
Anesth Analg ; 131(1): 24-30, 2020 07.
Article in English | MEDLINE | ID: covidwho-159435

ABSTRACT

BACKGROUND: Health care worker (HCW) safety is of pivotal importance during a pandemic such as coronavirus disease 2019 (COVID-19), and employee health and well-being ensure functionality of health care institutions. This is particularly true for an intensive care unit (ICU), where highly specialized staff cannot be readily replaced. In the light of lacking evidence for optimal staffing models in a pandemic, we hypothesized that staff shortage can be reduced when staff scheduling takes the epidemiology of a disease into account. METHODS: Various staffing models were constructed, and comprehensive statistical modeling was performed. A typical routine staffing model was defined that assumed full-time employment (40 h/wk) in a 40-bed ICU with a 2:1 patient-to-staff ratio. A pandemic model assumed that staff worked 12-hour shifts for 7 days every other week. Potential in-hospital staff infections were simulated for a total period of 120 days, with a probability of 10%, 25%, and 40% being infected per week when at work. Simulations included the probability of infection at work for a given week, of fatality after infection, and the quarantine time, if infected. RESULTS: Pandemic-adjusted staffing significantly reduced workforce shortage, and the effect progressively increased as the probability of infection increased. Maximum effects were observed at week 4 for each infection probability with a 17%, 32%, and 38% staffing reduction for an infection probability of 0.10, 0.25, and 0.40, respectively. CONCLUSIONS: Staffing along epidemiologic considerations may reduce HCW shortage by leveling the nadir of affected workforce. Although this requires considerable efforts and commitment of staff, it may be essential in an effort to best maintain staff health and operational functionality of health care facilities and systems.


Subject(s)
Coronavirus Infections , Critical Care/organization & administration , Epidemiologic Methods , Pandemics , Personnel Staffing and Scheduling/organization & administration , Pneumonia, Viral , Anesthesiology/organization & administration , COVID-19 , Computer Simulation , Health Workforce , Humans , Infectious Disease Transmission, Patient-to-Professional , Models, Organizational , Quarantine
SELECTION OF CITATIONS
SEARCH DETAIL